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Abstract
State-of-the-art speech recognition systems rely on fixed, hand-
crafted features such as mel-filterbanks to preprocess the wave-
form before the training pipeline. In this paper, we study end-to-
end systems trained directly from the raw waveform, building
on two alternatives for trainable replacements of mel-filterbanks
that use a convolutional architecture. The first one is inspired
by gammatone filterbanks (Hoshen et al., 2015; Sainath et al,
2015), and the second one by the scattering transform (Zeghi-
dour et al., 2017). We propose two modifications to these ar-
chitectures and systematically compare them to mel-filterbanks,
on the Wall Street Journal dataset. The first modification is the
addition of an instance normalization layer, which greatly im-
proves on the gammatone-based trainable filterbanks and speeds
up the training of the scattering-based filterbanks. The second
one relates to the low-pass filter used in these approaches. These
modifications consistently improve performances for both ap-
proaches, and remove the need for a careful initialization in
scattering-based trainable filterbanks. In particular, we show
a consistent improvement in word error rate of the trainable
filterbanks relatively to comparable mel-filterbanks. It is the
first time end-to-end models trained from the raw signal signif-
icantly outperform mel-filterbanks on a large vocabulary task
under clean recording conditions.
Index Terms: speech recognition, waveform, deep, end-to-end,
scattering, gammatones

1. Introduction
State-of-the-art speech recognition systems rapidly shift from
the paradigm of composite subsystems trained or designed in-
dependently to the paradigm of end-to-end training. While most
of the work in this direction has been devoted to learning the
acoustic model directly from sequences of phonemes or charac-
ters without intermediate alignment step or phone-state/senome
induction, the other end of the pipeline model – namely, learn-
ing directly from the waveform rather than from speech features
such as mel-filterbanks or MFCC – has recently received atten-
tion [1, 2, 3, 4, 5, 6, 7, 8], but the performances on the master
task of speech recognition still seem to be lagging behind those
of models trained on speech features [9, 10].

Yet, promising results have already been obtained by learn-
ing the front-end of speech recognition systems. We focus the
discussion on trainable components that can be plugged in as re-
placement of mel-filterbanks without modification of the acous-
tic model. The approach inspired by gammatone filterbanks of
Hoshen et al. and Sainath et al. [3, 4] achieved similar or better
results than comparable mel-filterbanks on multichannel speech
recognition and on far-field/noisy recording conditions. More
recently, Zeghidour et al. [8] proposed an alternative learnable
architecture based on a convolutional architecture that computes
a scattering transform and can be initialized as an approxima-

tion of mel-filterbanks, and obtained promising results on end-
to-end phone recognition on TIMIT. However, these approaches
have not been proven to improve on speech features on large-
scale, end-to-end speech recognition in clean recording condi-
tions on English – admittedly one of the tasks for which mel-
filterbanks have been the most extensively tuned.

We present a systematic comparison of the two previous
architectures of learnable filterbanks, which we will (coarsely)
refer to as gammatone-based and scattering-based, and evalu-
ate them against mel-filterbanks within an end-to-end training
pipeline on letter error rate and word error rate on the Wall
Street Journal dataset. Our main contributions and results are
the following:

1. A mean-variance normalization layer on top of the log non-
linearity of learnable filterbanks appears to be critical for the
efficient learning of the gammatone-based architecture, and
makes the training of the scattering-based architecture faster;

2. The low-pass filter previously used in the scattering-based
learnable filterbanks stabilizes the training of gammatone fil-
terbanks, compared to the max-pooling that was originally
proposed [3, 4];

3. For scattering-based trainable filterbanks, keeping the low-
pass filter fixed during training allows to efficiently learn the
filters from a random initialization, whereas the results of
[8] with random initialization of both the filters and the low-
pass filter showed poor performances compared to a suitable
initialization;

4. Both trainable filterbanks improve against the mel-
filterbanks baseline on word error rate on the Wall Street
Journal dataset, in similar conditions (same number of filters,
same end-to-end training convolutional architecture). This is
the first time learnable filterbanks improve against a strong
mel-filterbanks baseline on a large vocabulary, speech recog-
nition task under clean recording conditions.

The next section describes the learnable filterbanks architec-
tures. Then, we present the end-to-end convolutional architec-
ture used to perform the comparisons, and analyze the results of
our comparative studies.

2. Learning filterbanks from raw speech
The two approaches that we consider for learning filterbanks
from the raw waveform can be used as direct replacement for
mel-filterbanks in any end-to-end learning pipeline: they are
convolutional architectures that take the raw waveform as input
and output 40 channels every 10ms. As such, they can directly
be compared with standard mel-filterbanks, simply by chang-
ing the features stage of a neural-network-based acoustic model.
The filters are then nothing more than an additional layer to the
neural network and are learnt by backpropagation with the rest
of the acoustic model.
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Figure 1: Training Letter Error Rate (LER) for a gammatone-based architecture (left) and a scattering-based architecture (right), with
and without instance normalization.

The first architecture we consider is inspired by [3, 4], the
second one is taken from [8]. They are described in Table 1.

In both architectures, a convolutional layer with window
length 25ms (to match the standard frame size used in mel-
filterbanks) is applied with a stride of 1 sample, and is followed
by a nonlinearity to give 40 output channels for each sample.
Then, a pooling operator of width 25ms with a stride of 10ms
performs low-pass filtering and decimation. Finally, a log non-
linearity reproduces the dynamic range compression of log mel-
filterbanks. The parameters to be learnt are the convolution fil-
ters, and possibly the weights of the low-pass filters.

The two architectures differ by the choices of each layer
of computation. Hoshen et al. and Sainath et al. use 40 real-
valued filters with ReLU non-linearity, and rely on gammatones
as filter values to approximate mel-filterbanks [3, 4]. In their
work, they use a max-pooling operator for low-pass filtering.
In contrast, Zeghidour et al. [8] use 40 complex-valued filters
with a square modulus operator as non-linearity. Low-pass fil-
tering is then performed by multiplying each output channel by
a squared Hanning window so that, when using suitable Gabor
wavelets as convolution filters, the architecture closely approx-
imates mel-filterbanks computed on the power spectrum [11].

The number of filters (40), the convolution and pooling
width of 25ms, as well as the decimation of 10ms are not neces-
sarily the optimal parameters of either trainable architecture, but
these are the standard settings of mel-filterbanks (and likely the
best settings for these features on standard speech recognition
datasets). We keep these values fixed for the trainable architec-
tures, so that the comparison to mel-filterbanks is carried out in
the setting most favorable for the non-learnable baseline.

In the next subsections, we describe the improvements we
propose for these architectures: the low-pass filter and the addi-
tion of instance normalization.

2.1. Low-pass filtering

The original papers describing the gammatone-based trainable
filterbanks used max-pooling as low-pass filter, whereas the
scattering-based approach uses a squared Hanning window per
channel. To make sure the low-pass filter is not responsible for
notable differences between the two approaches we experiment
with the squared Hanning window on both architectures. For
both architectures, we also propose to keep this low-pass filter
fixed while learning the convolution filter weights, a setting that
was not explored by Zeghidour et al. [8], who learnt the low-
pass filter weights when randomly initializing the convolutions.

SCATTERING GAMMATONES

Conv1

1-80-400-1 1-40-400-1
(#in-#out-width-stride)

non-linearity sq. L2-Pooling ReLU

low-pass filter sq. Hanning max-pooling
(wdth=400, strd=160) or sq. Hanning

log-compression2 log(1+abs(.)) log(0.01+abs(.))

normalization mean-var. per-channel per-sentence

Table 1: Architectures of the two trainable filterbanks. Values
of width and strides are given to match the standard settings of
mel-filterbanks for waveform sampled at 16kHz.

2.2. Instance normalization

More importantly, we noticed that a per-channel per-sentence
mean-variance normalization after log-compression is impor-
tant for the baseline mel-filterbanks. Consequently, we propose
to add a mean-variance normalization layer on both trainable
architectures, performed for each of the 40 channels indepen-
dently on each sentence. Coincidently, this corresponds to an
instance normalization layer [12], which has been shown to sta-
bilize training in other deep learning contexts.

3. Experimental setup
The experiments compare different versions of the trainable ar-
chitectures against log mel-filterbanks on a single deep convo-
lutional network architecture for the acoustic model. The exper-
iments are carried out on the open vocabulary task of the Wall
Street Journal dataset [13], using the subset si284 for training,
nov93-dev for validation, and nov92-eval for testing. Training
is performed end-to-end on letters. We evaluate in both letter
and word error rates. All our experiments use the open source
code of wav2letter [14]. In the next subsections, we describe the
model, the different variants we tested and the hyperparameters.

1The convolution for the scattering-based architecture uses 80-real
valued output channels and squared L2-pooling on the feature dimen-
sion to emulate a complex-valued convolution with 40 filters followed
by a squared modulus operator. Thus, after the nonlinearity, both archi-
tectures have 40 filters.

2[8] use 1 to prevent log(0) and [3, 4] use 0.01. We kept the values
initially used by the authors of the respective papers and did not try
alternatives. We believe it has little impact on the final performance.



3.1. Acoustic model

Taking either log mel-filterbanks or trainable filterbanks, the
acoustic model is a convolutional network with gated linear
units (GLU) [15] trained to predict sequences of letters,
following [16]. The model is a smaller version of the con-
volutional network used in [16] since they train on the larger
LibriSpeech dataset. Using the syntax C-input channels-output
channels-width, the architecture we use has the structure
C-40-200-13/C-100-200-3/C-100-200-4/C-100-250-5/
C-125-250-6/C-125-300-7/C-150-350-8/C-175-400-9/
C-200-450-10/C-225-500-11/C-250-500-12/C-250-500-13/
C-250-600-14/C-300-600-15/C-300-750-21/C-375-1000-1.
All convolutions have stride 1. The number of input channels
of the n + 1th convolution is half the size of the output of
the n-th convolution because of the GLU. There are GLU
layers with a dropout [17] of 0.25 after each convolution
layer. There is an additional linear layer to predict the final
letter probabilities. When predicting letters, the training and
decoding are performed as in [16]. When predicting words, we
use a 4-gram language model trained on the standard LM data
of WSJ [13] and perform beam search decoding, as in [16].

3.2. Variants

We compare the two architectures of trainable filterbanks along
different axes: how to initialize the convolutions of the trainable
filterbanks, the low-pass filter, and instance normalization.

3.2.1. Gammatone-based architecture

Initialization of the convolution weights random (rand), or
with gammatone filters (gamm) that match the impulse response
of a reference open source implementation of gammatones [18];

Low-pass filter max-pooling as in [3], or the squared Hanning
window (Han-fixed).

3.2.2. Scattering-based architecture

Initialization of the convolution weights random (rand), or
Gabor filters (scatt) as described in Section 2.2 of [8];

Low-pass filter the squared Hanning window (Han-fixed), or
a low-pass filter of same width and stride initialized with the
weights of the squared Hanning window but the weights are
then learnt by backpropagation (Han-learnt).

3.3. Hyperparameters and training

For models trained on the raw waveform, the signal was first
normalized with mean/variance normalization by sequence.
The network is trained with stochastic gradient descent and
weight normalization [19] for all convolutional layers except
the front-ends. First, 80 epochs are performed with a learning
rate of 1.4, then training is resumed for 80 additional epochs
with a learning rate of 0.1. These hyperparameters were chosen
from preliminary experiments as they seemed to work well for
all architectures. Additional hyperparameters are the momen-
tum and the learning rate for the training criterion, respectively
chosen in {0, 0.9} and {0.001, 0.0001} [14, 16].

For Letter Error Rate (LER) evaluations, the hyperparame-
ters are selected using the LER on the validation set, validating
every epoch. For Word Error Rate (WER) evaluations, the hy-
perparameters are chosen on the validation set using the WER,
validating every 10 epochs. The model selected on LER is also
included for validation. The additional hyperparameters are the

MODEL
NOV93-DEV NOV92-EVAL
LER WER LER WER

SOTA – speech features

Deep Speech 2 [20] − − − 3.6
– (+ additional data)
RNN-WER - tri. LM [21] − − − 8.2
RNN - WSFT decoding [22] − − − 7.3
Seq2Seq + tri. LM [23] − 9.7 − 6.7
Multi-task CTC/att [24] 11.3 − 7.3 −
Att + RL [25] − − 6.1

SOTA – waveform

Att Wav2Text (+transfer) [26] − − 6.5 −
gamm (learnt)/gamm/max-pool 8.9 12.9 6.4 8.8
– (without inst. norm.)

FRONT FILTER LOW- NOV93-DEV NOV92-EVAL
END INIT PASS LER WER LER WER

mel-
fbanks

6.9 9.5 4.9 6.6

gamm
(learnt)

gamm Han-fixed 6.9 9.1 4.9 5.9
max-pool 7.2 9.3 4.9 6.0

rand Han-fixed 7 8.9 4.9 5.9
max-pool 7.2 9.2 5.1 6.3

scatt
(learnt)

scatt Han-fixed 6.7 8.3 4.6 6.1
Han-learnt 6.7 8.9 4.5 6.3

rand Han-fixed 6.8 8.5 4.7 5.7
Han-learnt 6.9 8.9 4.9 5.8

Table 2: Results on the open vocabulary task of the WSJ dataset.
(i) SOTA – speech features: for state-of-the-art and representa-
tive baselines using speech features (mel-filterbanks, spectro-
grams or MFCC), (ii) SOTA-waveform: state-of-the-art from
the raw waveform, including our own implementation of vanilla
gammatone filterbanks without instance normalization, and (iii)
our baseline and the different variants of the trainable filter-
banks (with instance normalization) studied in this paper.

weight of the language model and the weight of word insertion
penalty (see [16] for details). We set them between 5 and 8 by
steps of 0.5, and between −2 and 0.5 by steps of 0.1, respec-
tively. For hyperparameter selection, the beam size of the de-
coder is set to 2, 500; the final performances are computed with
the selected hyperparameters but using a beam size of 25, 000.

4. Experiments
4.1. Baseline results

Table 2 contains our results together with end-to-end baselines
from the literature. [20] is the current state-of-the-art on the
WSJ dataset; it is given as a topline but uses much more training
data (∼ 12, 000h of speech) so the results are not comparable.
[21, 22, 23, 24] are representative results in terms of WER and
LER from the literature of end-to-end models trained on speech
features from 2014-2017, in chronological order. [25] and [26]
are the current state-of-the-art in LER on speech features and



MODEL PRE-EMP
NOV93-DEV NOV92-EVAL
LER WER LER WER

gamm
(learnt)

no pre-emp 6.9 9.1 4.9 5.9
pre-emp 6.8 9 4.7 5.7

scatt
(learnt)

no pre-emp 6.7 8.3 4.6 6.1
pre-emp 6.5 8.7 4.5 5.7

Table 3: Comparison of models trained with or without a learn-
able pre-emphasis layer. All models are initialized either with
the scattering or gammatone initialization, and the pooling
function is a fixed squared Hanning window.

from the waveform respectively. These comparisons validate
our baseline model trained on mel-filterbanks as a strong base-
line in light of recent results, as it outperforms the state-of-the-
art in LER by a significant margin (4.9% vs 6.1% for [25]), and
achieves a test WER of 6.6%, better than all other end-to-end
baselines ([27] and [7] report WER that are below our 6.6% but
are on easier closed vocabulary tasks).

4.2. Instance normalization

As described in Section 2.2, we evaluate the integration of in-
stance normalization after the log-compression in the trainable
filterbanks, which was not used in previous work [3, 4, 7, 8]
but is used in our baseline. Figure 1 shows training LER
as a function of the number of epochs for scattering-based
and gammatone-based filterbanks models, with and without
instance normalization. We can see that this normalization
drastically improves the training stability of the gammatone-
based model, while it moderately improves the scattering-based
model. We observed a positive impact of instance normal-
ization in all settings, and so only report as a reference the
results of our implementation of a vanilla gammatone-based
trainable filterbanks following [3, 4]. Comparing gammatone
(learnt)/gamm/max-pool without instance norm (under SOTA
– waveform) to the results of gammatone (learnt)/gamm/max-
pool in Table 2, we see a significant improvements of both LER
and WER due to instance normalization, with an absolute re-
duction in LER and WER of 1.5% and 2.8% respectively.

4.3. Impact of the low-pass filter

For low-pass filtering, we first compare the Han-fixed setting to
max-pooling for gammatone-based filterbanks (as max-pooling
was previously used in [3, 4]), and to Han-learnt for scatter-
ing, all with instance normalization. The tendency is that the
Han-fixed setting consistently improves the results in LER and
WER of both trainable filterbanks. More importantly, using ei-
ther an Han-fixed or Han-learnt filter when learning scattering-
based filterbanks from a random initialization removes the gap
in performance with the Gabor wavelet initialization that was
observed in [8] where the lowpass filter was also initialized ran-
domly. This is an important result since carefully initializing
the convolutional filters is both technically non-trivial, and also
relies on the prior knowledge of mel-filterbanks. We believe
the ability to use random initialization is an important first step
for more extensive tuning of trainable filterbanks (e.g., trying
different numbers of filters, decimation or convolution width).

Compared to the literature, replacing the max-pooling by
a low-pass filter and adding an instance normalization layer
leads to a 23% relative improvement in LER and a 33% relative

improvement in WER on nov92-eval on the gammatone-based
trainable filterbanks, a significant improvement compared to the
existing approach [3, 4]. Our models trained on the waveform
also exhibit a gain in performance in LER of 22 − 31% rel-
ative compared to the state-of-the-art end-to-end model trained
on the waveform with its first 6 layers being pre-trained for mel-
filterbanks reconstruction [26], and outperform various end-to-
end models trained on speech features, both in LER [24, 25]
and WER [21, 22, 23].

4.4. Trainable filterbanks vs mel-filterbanks

Comparing both trainable filterbanks with instance normaliza-
tion to the log mel-filterbanks baseline, we observe that the per-
formances of the Han-fixed settings and of the mel-filterbanks
are comparable in terms of LER. However, we observe a consis-
tent improvement in terms of WER of all trainable filterbanks.
To the best of our knowledge, this is the first time a significant
improvement in terms of WER relatively to comparable mel-
filterbanks has been shown on a large vocabulary task under
clean recording conditions. Some improvements on the clean
test of the Switchboard dataset have previously been observed
by [7], but their comparison point is MFCC rather than mel-
filterbanks and the number of filters of the trainable architecture
differs from their MFCC baseline.

4.5. Adding a learnable pre-emphasis layer

The first step in the computation of mel-filterbanks is typically
the application of a pre-emphasis layer to the raw signal. Pre-
emphasis is a convolution with a first-order high-pass filter of
the form y[n] = x[n] − αx[n − 1], with α typically equal to
0.97. This operation can be performed by a convolutional layer
of kernel size 2 and stride 1, that can be plugged below time-
domain filterbanks, initialized with weights [−0.97 1], then
learned with the network. In Table 3, we compare the perfor-
mance of identical models (all using a fixed Hanning window,
and a gammatone or scattering initialization) with and without
pre-emphasis. We observe a gain on both LER and WER (ex-
cept on nov93-dev WER/scatt) when using pre-emphasis.

5. Conclusion
This paper presents a systematic study of two approaches for
trainable filterbanks, which clarifies good practices and identi-
fies better architectures to learn from raw speech. Our results
show that adding an instance normalization layer on top of the
trainable filterbanks is critical for learning gammatone-based
architectures, and speeds up learning of scattering-based archi-
tectures. Second, the use of a fixed squared Hanning window
as low-pass filter is critical to learn the scattering-based filter-
banks from random initialization of the filters, and improves
on max-pooling for gammatone-based filterbanks. With these
two improvements, we observe a consistent reduction of WER
against comparable mel-filterbanks on the open vocabulary task
of the WSJ dataset, in the setting of speech recognition under
clean recording condition – most likely the setting on which
mel-filterbanks have been the most heavily tuned.
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