Links between Perceptrons, MLPs and SVMs

Ronan Collobert
Samy Bengio
IDIAP, Rue du Simplon 4, 1920 Martigny, Switzerland

Abstract

We propose to study links between three
important classification algorithms: Percep-
trons, Multi-Layer Perceptrons (MLPs) and
Support Vector Machines (SVMs). We first
study ways to control the capacity of Percep-
trons (mainly regularization parameters and
early stopping), using the margin idea intro-
duced with SVMs. After showing that under
simple conditions a Perceptron is equivalent
to an SVM, we show it can be computation-
ally expensive in time to train an SVM (and
thus a Perceptron) with stochastic gradient
descent, mainly because of the margin maxi-
mization term in the cost function. We then
show that if we remove this margin maxi-
mization term, the learning rate or the use
of early stopping can still control the mar-
gin. These ideas are extended afterward to
the case of MLPs. Moreover, under some
assumptions it also appears that MLPs are
a kind of mixture of SVMs, maximizing the
margin in the hidden layer space. Finally,
we present a very simple MLP based on the
previous findings, which yields better perfor-
mances in generalization and speed than the
other models.

1. Introduction

Since the Perceptron algorithm proposed by Rosen-
blatt (1957), several machine learning algorithms were
proposed for classification problems. Among them,
two algorithms had a large impact on the research
community. The first one is the Multi-Layer Percep-
tron (MLP), which became useful with the introduc-
tion of the back-propagation training algorithm (Le-
Cun, 1987; Rumelhart et al., 1986). The second one,
proposed more recently, is the Support Vector Machine
algorithm (SVM) (Vapnik, 1995), which supplied the

Appearing in Proceedings of the 21°% International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
2004 by the first author.

COLLOBER@QIDIAP.CH
BENGIOQIDIAP.CH

large margin classifier idea, which is known to improve
the generalization performance for binary classification
tasks. The aim of this paper is to give a better under-
standing of Perceptrons and MLPs applied to binary
classification, using the knowledge of the margin in-
troduced with SVMs. Indeed, one of the key problem
in machine learning is the control of the generalization
ability of the models, and the margin idea introduced
in SVMs appears to be a nice way to control it (Vap-
nik, 1995).

After the definition of our mathematical framework
in the next section, we first point out the equivalence
between a Perceptron trained with a particular cri-
terion (for binary classification) and a linear SVM.
As in general Perceptrons are trained with stochastic
gradient descent (LeCun et al., 1998), and SVMs are
trained with the minimization of a quadratic problem
under constraints (Vapnik, 1995), the only remaining
difference appears to be the training method. Based
on this remark, we study afterward traditional ways
to control the capacity of a Perceptron when train-
ing with stochastic gradient descent. We first focus
on the use of a weight decay parameter in section 3,
which can lead to a computationally expensive train-
ing time. Then, we show in section 4 that if we re-
move this weight decay term during stochastic gradi-
ent descent, we can still control the margin, using for
instance the learning rate or the mechanism of early
stopping. These ideas are then extended in section 6 to
MLPs with one hidden layer, for binary classification.
Under some assumptions it also appears that MLPs
are a kind of mixture of SVMs, maximizing the margin
in the hidden layer space. Based on the previous find-
ings, we finally propose a simplified version of MLPs,
easy to implement and fast to train, which gives in
general better generalization performance than other
models.

2. Framework Definition

We consider a two-class classification problem, given a
training set (x7,y),_, , with (x;,y) € R™ x {—1,1}.
Here z; represents the input vector of the [*" example,
and y; represents its corresponding class. We focus

on three models to perform this classification: Per-
ceptrons (including their non-linear extension called
®-machines!), Multi Layer Perceptrons (MLPs), and
Support Vector Machines (SVMs). The decision func-
tion f,(.) of all these models can be written in its gen-
eral form as

fo(x) =w-P(x)+0b, (1)

where w is a real vector of weights and b € R is
a bias. The generic vector of parameters 6 repre-
sents all the parameters of the decision function (that
is, w, b, and all parameters of ®, if any). For ®-
machines and SVMs, & is an arbitrary chosen func-
tion; in the special case of ®(x) = z, it leads respec-
tively to Perceptrons and linear SVMs. We also con-
sider MLPs with one hidden layer and N hidden units.
In that case the hidden layer can be decomposed as
O() = (P1(+), P2(+), ..., PN (+)), where the i-th hid-
den unit is described with

D,(x) =h(vi-x+d;). (2)
Here (v;,d;) € R™ x R represents the weights of the
i-th hidden unit, and A is a transfer function which
is usually a sigmoid or an hyperbolic tangent. Note
that the hyperspace defined with {®(z), © € R™} will
be called “feature space”, or sometimes “hidden layer
space” in the special case of MLPs.

Let us now review the SVM algorithm (Vapnik, 1995):
it aims at finding an hyper-plane f,(.) in the feature
space, which separates the two classes while maximiz-
ing the margin (in the feature space) between this
hyper-plane and the two classes. This is equivalent
to minimizing the cost function

L
I
0 — 9 Hw”2 Z L=y folx)l, (3)

where |z|, = max(0,z). u € RT is a hyper-parameter
(also called weight decay parameter) which has to be
tuned, and controls the trade-off between the max-
imization of the margin and the number of mar-
gin errors. SVMs are usually trained by minimiz-
ing a quadratic problem under constraints (Vapnik,
1995): if we introduce Lagrange multipliers o =
(a1,az,...,ar) € RE the minimization of (3) is

!®-machines were introduced very early in the machine
learning community (Nilsson, 1965). They are to Percep-
trons what non-linear SVMs are to SVMs: after choos-
ing an arbitrary function ® which maps the input space
into another arbitrary space, we apply the Perceptron al-
gorithm to examples (®(z;), yi) instead of (x;, yi), which
allows non-linear discrimination over training examples.

equivalent to minimizing in the “dual space”

L L L

1
a— Zaz+2 SN ukyiak o ®(a)-B(x), (4)
k=1 1=1
subject to the constraints
L 1
Zylalzo and ogalgf vi. (5)
=1

The weight w is then given? by

1 L
= ; Zyl Oll(I)(icl). (6)
=1

Note that in general, only few «; will be non-zero;
the corresponding training examples (z;, y;) are called
“support vectors” (Vapnik, 1995) and give a sparse
description of the weight w. Efficient optimization
of (4) has been proposed by Joachims (1999). Note
also that inner products ®(xy) - ®(z;) in the feature
space are usually replaced by a kernel function, which
allows efficient inner products in high dimensional fea-
ture spaces. However, we will not focus on kernels in
this paper.

The training of Perceptrons, ®-machines and MLPs
is usually achieved by minimizing a given criterion
Q(fs(.), .) over the training set

L
Z (fol0), (7)

using gradient descent, until reaching a local optimum.
We will focus on stochastic gradient descent, which
gives good results in time and training performance
for large data sets (LeCun et al., 1998). Note that
the original Perceptron algorithm (Rosenblatt, 1957)
is equivalent to the use of the criterion

Qfo(z1), wi) = | — ui fo(@1)] - (8)

However, as this criterion has some limitations in prac-
tice (see Bishop, 1995), we will not focus on it. Instead,
the criterion usually chosen (for all kinds of MLPs) is
either the Mean Squared Error or the Cross-Entropy
criterion (Bishop, 1995). Minimizing (7) using the
Mean Squared Error criterion is equivalent, from a
likelihood perspective, to maximizing the likelihood

2Traditional SVM notations use a hyper-parameter C'
instead of the weight decay parameter u. Here, we chose
a notation coming from the MLP to establish clear links
between all the models. The relation is given simply with
C =1/(Lu). Lagrange multipliers «; given here also have
to be divided by p to recover traditional SVM notation.

ol

===- log(1+exp(-2z))
S d]
a4, *

Figure 1. The Cross-Entropy criterion z — log(l +
exp(—z)) versus the margin criterion z — |1 — z|;.

under the hypothesis that the classes y; are generated
from a smooth function with added Gaussian noise.
Since y; is a binary variable, a Gaussian model is not
really appropriate (Bishop, 1995), hence we prefer to
focus here on the Cross-Entropy criterion, which max-
imizes the likelihood while considering y; as coming
from a Bernoulli distribution. The cost function (7)
can be rewritten (all details are given in Bishop, 1995)

as
L

= ;;mgu rep(-pf@),)
using the Cross-Entropy criterion. In order to avoid
over-fitting, two methods are often used (Plaut et al.,
1986) while training MLPs: either we perform early
stopping (that is, we stop the training process before
reaching a local optimum) or we add regularization
terms over the parameters of the model, which leads
to the minimization of

N

L v
0= Ll + 23 il

i=1
2 S log(1+ exp(—y1 fo(a))) . (10)
=1

Regularization is then controlled by tuning the weight
decay parameters p and v. Note that the second
term is not present when training Perceptrons or &®-
machines.

Let us point out that the Cross-Entropy criterion
z — log(1 + exp(—z)) used for MLPs is a “smooth”
version of the “hard” margin criterion z — |1 — z|,
used for SVMs, as shown in Figure 1. Moreover, it
has been shown recently by Rosset et al. (2004) that
the use of the Cross-Entropy criterion was related to
the maximization of the margin. Thus, the difference
between the “smooth” and the “hard” criteria is not
crucial to understand the behavior of MLPs. For sim-
plification, we will use in this paper the “hard” version
of the criterion. Hence, instead of minimizing (10), we

will consider the minimization of

2 2

With this criterion, it appears obvious that &-
machines (respectively Perceptrons) are equivalent to
SVMs (resp. linear SVMs). Only the training method
remains different: Perceptrons are trained by stochas-
tic gradient descent on (3), whereas SVMs are trained
by minimizing the quadratic problem (4) under con-
straints (see (Joachims, 1999) for details on SVM
training). Thus, we will study in the following two
sections the training process of Perceptrons (or linear
SVMs) with stochastic gradient descent, using what
we now know about SVMs. We will consider the two
main cases used to control the capacity of a set of Per-
ceptrons; first the use of a regularization term in the
cost function (as SVMs), and then the use of early
stopping instead.

3. A Note on Stochastic Gradient with
Weight Decay

In this section, we consider the cost function (3) in the
linear case, which can be rewritten as:

L
Z l—y (w-z+0)],. (12)
=1

I
(w,) = & flwll? +

For a given training example (z;, y;), the stochastic
update for the weight vector w is:

w e (I =Ap)w+ Ay
(1—A)w

if yp(w-a;+0b) <1
otherwise

(13)
given a learning rate A\. From (6), we know that the
optimal w is a linear combination of training exam-
ples. Therefore, the update (13) is equivalent to the
following update written in the dual space:

IT=Aw)ag+p ifk=1
Vk, ap «— and y; (w-2;+b) <1
(1= otherwise .

(14)
A study of stochastic gradient in the dual space has
already been presented in Kivinen et al. (2002). How-
ever, we would like here to use the formulation (14) to
give a lower bound on the number of iterations needed
to train a Perceptron (or a linear SVM) with stochas-
tic gradient descent. Let us consider now a training
example (x;, y;) which becomes useless at some point
during training. In other words, if we note «j the
value of its corresponding weight «o; at this point, o
has to be decreased from af to zero. Using (14), it

appears that in the optimistic case o; will be equal to
(1 — Auw)ENeaf after N, epochs over the whole train-
ing set. It will therefore require at least around %
epochs over the whole training set to only divide af
by two. With a similar analysis, if the [-th example
has to be a support vector at bound, it can be shown

log(LAp)
L

that it will require around =537 epochs (in the best
m

case) for a weight a; at zero to reach the bound %
given in (5). This leads to the following theorem:

Theorem 1 Training a Perceptron using a weight de-
cay (or a linear SVM) with stochastic gradient descent
requires at least ﬁ epochs over the whole training
set.

Thus, in the case of a small learning rate A and a
small weight decay parameter u, which is often the
case, it becomes very quickly computationally expen-
sive to reach the true SVM solution with stochastic
gradient descent. A typical example could be given?
with Ay = 107 and L = 10%, which requires at least
103 iterations.

4. A Justification of Early Stopping

We already highlighted that the control of the gener-
alization ability of a Perceptron is usually achieved in
two different ways: the first one is the use of a regular-
ization term in the cost function; the second one is the
use of early stopping, that is stopping training before
reaching a local optimum, usually according to an esti-
mate of generalization error on a “validation” set. Let
us now consider Perceptrons training (using stochastic
gradient descent) by minimizing the cost function (12)
without the regularization term, that is:

L

<w,b>ei;1—yl<w.ml+m+' (15)

We will now show in this framework that the margin
of a Perceptron can be controlled both by tuning the
learning rate used in the gradient descent, and by early
stopping. As the margin size controls the capacity
and thus the generalization performances (see Vapnik,
1995) it gives a justification for not using a regulariza-
tion term.

Deriving stochastic gradient equations for cost func-
tion (15) leads to the simple Algorithm 1, that we call
the “Margin Perceptron” algorithm. Note that this
algorithm is far from being new, and is even proposed

3This corresponds to the best obtained generalization
performances using 10* examples, on the two databases
presented at the end of the paper.

Algorithm 1 Margin Perceptron Algorithm
Initialize w and b to zero
repeat
for [€ {1..L} do
if y; (w-z; +b) <1 then
w—w+ Ay
b—b+ Ay
end if
end for
until termination criterion

in Duda and Hart (1973), as a variant of the original
Perceptron training algorithm.

We first want to consider this algorithm in the case
where the classes in the training set are separable.
For simplification reasons, we consider in the rest of
this section the case where the bias b is fixed to zero
(all results can be extended without this constraint,
as shown in Collobert & Bengio, 2004b). In that case,
we consider the separating hyper-plane x — w - x such
as y; (u - x;) > 1 Vi, which has the maximal mar-

gin Prax = ﬁ We then derive equations similar to

the well-known Novikoff theorem (1962) for the orig-
inal Perceptron convergence proof. We note w! the
weight vector of the Perceptron after ¢ updates in Al-
gorithm 1, and [; the index of the example updated at
t. First, we have

u-wt w-w=t Ay, u -,
w-wh 4 A (16)

tA.

VIVl

Moreover, if we consider R the radius of the data (that
is, ||| < R V1), we have

2 w2+ 2 X, whh @, 4 N, |
||wt—1H2 + 2\ +)\2R2

tA2 (2 + R?).

[w

INIA I

(17)
Using (16) and (17), we obtain with the Cauchy-
Schwarz inequality:

w - w

ol ot 1)

Vi3 R

Pmax

tA

ININIA

which leads to an upper bound on the number of up-

dates: A)
t< — <A+J#). (19)

pmax

This shows that the Margin Perceptron converges in a
finite number of updates in the separable case, which
has already been demonstrated (Duda & Hart, 1973).

4 0.06
3| 0.055 -
e
]
=
a 0.05 8
<
h]
g
1 0.045
[0} 0.04
0 0.002 0.004 N 0.006 0.008 0.01 0 0.002 0.004 N 0.006 0.008 0.01
(a) (b)
0.4 0.0
0.4 075
0.35 007
5
03 065 &
]
025 0.06 £
g
0.2 .055
0.15 0.05|
Oy 1 2 3 4 5 0 1 2 3 4 5
t x10* t x 10"
(c) (d)

Figure 2. Practical examples of the control of the margin,
with the Margin Perceptron algorithm. (a) and (b) rep-
resent respectively the margin p and the validation error
with respect to the learning rate A\, when the number of up-
dates is fixed. (c) and (d) represent respectively the margin
p and the validation error with respect to the number of
updates t, when the learning rate A is fixed.

However, if we introduce (19) into (17), we are then
able to compute a lower bound on the margin p =
Hwitll found by the Margin Perceptron, as stated in the
following theorem:

Theorem 2 If the classes are separable, the Margin
Perceptron algorithm will converge in a finite number
of iterations, and its final margin p will satisfy

1

P = Py Tpay

Therefore, the smaller is the learning rate, the larger
will be the margin of the Perceptron. Note that
in Graepel et al. (2001), the authors already estab-
lished a relation between the existence of a large mar-
gin classifier and the sparseness in the dual space of the
solutions found by the original Perceptron algorithm.
Here, in the case of the Margin Perceptron algorithm,
we instead relate the margin found by the Perceptron
to the largest existing margin.

In the non-separable case, we would like to be able
to control the margin (that is p = ﬁ), while mini-
mizing the number of errors in the margin (15). SVMs
control the trade-off between these two quantities with
the weight decay parameter u in the cost function (12).

By construction, the Margin Perceptron minimizes the
number of errors in the margin through training iter-
ations. Using (17), the evolution of the margin can be
described using the following theorem:

Theorem 3 After t updates, the margin p; of the
Margin Perceptron is bounded in the following way:

2/

N e

Thus, the smaller is the number of updates or the
learning rate, the larger will be the margin. As the
number of updates and the learning rate control the
margin, they also control the generalization perfor-
mance, as highlighted previously. To give an idea of
what happens in practice, we give an example of the
control of the margin in Figure 2. As early stopping
limits the number of updates, a justification of early
stopping is given with Theorem 3, which shows that
early stopping controls the size of the margin. An il-
lustration is given in Figure 3.

5. Extension to Non-Linear Models

The result in Section 3 is still valid without any re-
striction if we choose an arbitrary ® function which
maps the input space into an arbitrary space, and if
we work with examples (®(z;), y;) instead of (z, y;).
Results in Section 4 remain valid as long as there exists
a constant R € R such as ||®(z;)]| < R Vi. Thus, if the
constraint is respected, all results apply to ®-machines
and non-linear SVMs.

6. Extension to MLPs

We consider now the minimization of (11), where func-
tion f is an MLP with one hidden layer, described
by (1) and (2). For an easier understanding of what
really happens in MLPs, let us perform yet another
simplification: instead of using a hyperbolic tangent
for the transfer function h, we consider the following
“hard” version of h

-1 ifxr<-—1
h(z) = rz if —1<z<1 (20)
1 ifz>1.

Note that the use of this transfer function still main-
tains the universal approximation property of MLPs,
as shown in Hornik et al. (1989). Omne could argue
that we loose the smooth non-linearity of the hyper-
bolic tangent which could reduce the approximation
capabilities of MLPs, but in practice, it leads to per-
formance at least similar to a standard MLP, for the
same number of hidden units.

Figure 3. Visual example showing the evolution of the separating hyper-plane and its margin during training with the
Margin Perceptron. The aim is to separate two classes: crosses (blue) and circles (red). We have added some noisy
crosses near (just below) the circles. (a) shows the hyper-plane found with the original Perceptron algorithm (see (8) in
Section 2), after one epoch over the training set; it is not possible to control the margin, and the hyper-plane is not robust
to noise. (b), (c) and (d) show the hyper-plane found by the Margin Perceptron algorithm, after 1, 10 and 100 iterations.
Dashed lines represents the margin of the hyper-plane. Early stopping thus allow to choose solution (b), which is robust

to noise.

As for SVMs, the minimization of (11) can be rewritten
as a minimization problem under constraints: (11) is
equivalent to minimizing

L v N
(’U],...,’UN7OZ) - _Zal + 52“1)1”2
=1 i=1

1L
50

k=11

(=

Yy o ap O(xg) - () (21)

subject to the constraints (5) and

oL
w* .
vi=— ;yl arh (v -+ d;) @ Vi,

L
Zylh/(vi - Z —|—d¢)al =0. Vi,
=1

where w® is the i-th coordinate of w. Once again
w is given by (6). Even if we do not know how
to solve this minimization problem under constraints,
we can state Theorem 4, which is proven by verify-
ing all Karush-Kuhn-Tucker conditions (see for exam-
ple Fletcher, 1987), which is quite fastidious (details
are given in Collobert & Bengio, 2004b).

Theorem 4 If an MLP is minimum of (11), then it
mazimizes the margin in the hidden layer space. In
other words, (w, b) is solution of the SVM problem (4),
for the hidden layer ® found by the MLP.

Moreover, the i-th hidden unit is solution of a local
SVM on examples x; which satisfy |v;-x;+d;| < 1. For
this SVM, the standard separation constraints y; (v; -
x;+d;) > 1 are replaced with the constraints

y (v +d;) > 1—y, (b—!—z w” h(vg-x+dy)) . (22)
ki

Finally, if (®(x;), y1) is a “global” support vector for
w, then (z;, y1) will be a “local” support vector for the
i-th unit iof |v; -2+ d;| < 1.

This theorem has several important consequences.
First, it shows that an optimal MLP for the cost func-
tion (11) is an SVM in the hidden layer space. It is
therefore possible to apply the large margin classifier
theory (Vapnik, 1995) to MLPs. Moreover, it gives
an interesting interpretation of the role of the hidden
units: each of them focuses on a subset of the training
set, and is a kind of local SVM, where the constraints
depend on the classification performance of the other
hidden units. Note also that the output weight vec-
tor w is a sparse combination of the features ®(x;),
whereas the hidden units weights v; are a sparse com-
bination of the training examples z;.

Thus, if we now consider training an MLP by mini-
mizing the cost function (11) using stochastic gradient
descent, we can derive easily the same lower bound
on the number of iterations found in section 3. If we
remove regularization terms, as in section 4 for the
Margin Perceptron, Theorem 3 is still valid for control-
ling the “global” margin p = HETI with early stopping
or the learning rate. For hidden units, the margin is
not straightforward to derive, because constraints (22)
are different for each training example; however, using
derivations similar to those used for Theorem 3, it is
possible to control the norms ||v;|| as well.

Note that in practice we are left with too many hyper-
parameters to select with this kind of MLP: first the
weight decay parameters p and v, and then the learn-
ing rates for the hidden and output layers. In particu-
lar, tuning the two learning rates happens to be really
tricky. We therefore propose yet another simplification

in the next section, already introduced in Collobert
and Bengio (2004a) in an optimization framework.

7. A Very Simple MLP

It has been shown in Auer et al. (2002) that any
boolean function can be approximated with a Percep-
tron committee f,(z) = b+ Zf\il h(v; - x 4+ d;). This
shows that we do not need to have output weights in
MLPs for binary classification. In that case however, if
we use the cost function (11), we cannot anymore con-
trol the size of the margin in the hidden layer space,
as stated in section 6. We thus propose to minimize
instead

0= 310wl (23)
l

where 3 is a hyper-parameter which has to be tuned.
As the margin p in the hidden layer space is fixed and
satisfies

23

\/N)

it is very easy to control this margin with 3. More-
over, note that what we developed in section 6 remains
valid, providing we force w’ = 1 V4. In particular, each
hidden unit acts as a local SVM, and it is possible to
control the norms ||v;|| (and thus the sparseness of the
optimal v; in the dual space) with the learning rate
and early stopping.

Deriving stochastic gradient descent equations for the
cost function (23) leads to the very simple Algorithm 2.
This algorithm is very fast, because very quickly hid-

Algorithm 2 Simple MLP Algorithm
Initialize w and b to zero
repeat
for l € {1..L} do
if y; (w-x;+b) < then
for i € {1.N} do
if |v; -z + d;| <1 then
v — v+ Ay
di —di + Ay
end if
end for
b—b+ Ay
end if
end for
until termination criterion

den units will focus on few examples and only a few
updates will be performed. Moreover, it is very sim-
ple to implement, and as it does not require any in-
ternal storage (such as derivatives for example), nor

Test Error (%)
Model Forest | Connect-4
SVM 10.5 11.4
Standard MLP 11.1 11.4
Simple MLP 8.5 10.3
Time Factor

Model Forest | Connect-4
SVM 134.2 54.7
Standard MLP 3.1 3.0
Simple MLP 1.0 1.0

Table 1. Test errors of SVMs (with a Gaussian kernel),
MLPs (trained with the Cross-Entropy criterion), and our
proposed Simple MLP on two different classification tasks
(Forest and Connect-4). The time factors give the train-
ing time relative to the ones of Simple MLPs. This shows
that not only the Simple MLP is statistically significantly
better than MLPs and SVMs (with 99% confidence), it is
also significantly faster (from 3 to 100 times faster!).

any hyperbolic tangent computation, it is really com-
putationally efficient. Finally, from an optimization
viewpoint, it also exploits the fact that the Hessian
of (23) is block-diagonal (with respect to pair of hidden
units), leading to a mathematically efficient algorithm,
as shown in Collobert and Bengio (2004a).

To illustrate this, we performed some experiments on
the two biggest datasets available on the UCI web site,
using the Torch C++ library* which implements in
an efficient way MLPs and SVMs. The SVM code
included in the library is one of the fastest avail-
able, based on an enhanced version of the SMO al-
gorithm using cached kernel evaluations (as described
in Joachims, 1999). We used 300Mo for the kernel
evaluation cache on top of the memory needed for the
SVM structure, whereas MLPs did not need any addi-
tional memory. The first dataset was UCI Forest. We
modified the 7-class classification problem into a bal-
anced binary classification problem where the goal was
to separate class 2 from the others. We used 100,000
examples for training, 10,000 for validation and 50,000
for testing. The second dataset was UCI Connect-4.
We modified the 3-class classification problem into a
balanced binary classification problem where the goal
was to separate class “won” against the others. We
used 50,000 examples for training, 7,000 for validation
and 10,000 for testing. All hyper-parameters of MLPs
and SVMs were carefully tuned using validation sets.
Both the Standard MLP and the Simple MLP used
early stopping based on the validation set. Results are
given in Table 1.

4 Available at www.torch.ch

8. Conclusion

In this paper, we have drawn some new links between
three well-known machine learning algorithms, namely
Perceptrons, Multi Layer Perceptrons (MLPs), and
Support Vector Machines (SVMs). In particular, after
pointing out that apart from the training algorithms
which are different, Perceptrons are equivalent to lin-
ear SVMs, we have shown that this difference is im-
portant since it can be computationally expensive to
reach the SVM solution by stochastic gradient descent,
mainly due to the regularization term. Removing this
term, we have then shown that the margin can still be
controlled by other means, namely the learning rate
and the mechanism of early stopping. In the case of
linear separable classes, we have even shown a relation
between the largest existing margin and the margin
of solutions found with the Perceptron. Furthermore,
we have shown that, under some assumptions, MLPs
are in fact SVMs which are maximizing the margin in
the hidden layer space, and where all hidden units are
also SVMs in the input space. The results found for
Perceptrons regarding methods to control the margin
can also be applied to MLPs. Finally, we have pro-
posed a new algorithm to train MLPs which is both
very efficient (in time and space) and yields at least as
good generalization performance as other models. In
the future, we would like to explore the possibility of
extending the efficient training algorithm techniques
of SVMs (Joachims, 1999) to the case of MLPs.

Acknowledgments

The authors would like to thank the Swiss NSF
through the (IM)2 project for financial support.

References

Aver, P., Burgsteiner, H., & Maass, W. (2002). Reduc-
ing communication for distributed learning in neural
networks. ICANN’2002 (pp. 123-128). Springer.

Bishop, C. (1995). Neural networks for pattern recog-
nition. Oxford University Press.

Collobert, R., & Bengio, S. (2004a). A gentle hessian
for efficient gradient descent. IEEFE International

Conference on Acoustic, Speech, and Signal Process-
ing, ICASSP.

Collobert, R., & Bengio, S. (2004b). Links between
Perceptrons, MLPs and SVMs (Technical Report
04-06). IDIAP.

Duda, R., & Hart, P. (1973). Pattern classification
and scene analysis. New York: Wiley.

Fletcher, R. (1987). Practical methods of optimization.
John Wiley & Sons.

Graepel, T., Herbrich, R., & Williamson, R. (2001).
From margin to sparsity. Advances in Neural In-
formation Processing Systems (pp. 210-216). MIT
Press.

Hornik, K., Stinchcombe, M., & White, H. (1989).
Multilayer feedforward networks are universal ap-
proximators. Neural Networks, 2, 359-366.

Joachims, T. (1999). Making large-scale support vec-
tor machine learning practical. In B. Schélkopf,
C. Burges and A. Smola (Eds.), Advances in Kernel
Methods. The MIT Press.

Kivinen, J., Smola, A. J., & Williamson, R. C. (2002).
Online learning with kernels. Advances in Neural
Information Processing Systems (pp. 785-792). MIT
Press.

LeCun, Y. (1987). Modeles connexionnistes de
Dapprentissage (connectionist learning models).
Doctoral dissertation, Université P. et M. Curie
(Paris 6).

LeCun, Y., Bottou, L., Orr, G., & Miller, K.-R.
(1998). Efficient backprop. In G. Orr and K.-R.
Miiller (Eds.), Neural networks: Tricks of the trade,
9-50. Springer.

Nilsson, N. (1965). Learning machines. McGraw-Hill.

Novikoff, A. B. J. (1962). On convergence proofs on
perceptrons. Proceedings of the Symposium on the
Mathematical Theory of Automata (pp. 615-622).

Plaut, D., Nowlan, S., & Hinton, G. E. (1986). Ezper-
iments on learning by back-propagation (Technical
Report CMU-CS-86-126). Department of Computer
Science, Carnegie-Mellon University.

Rosenblatt, F. (1957). The perceptron — a perceiv-
ing and recognizing automaton (Technical Report
85-460-1). Cornell Aeronautical Laboratory.

Rosset, S., Zhu, J., & Hastie, T. (2004). Margin max-
imizing loss functions. In S. Thrun, L. Saul and
B. Scholkopf (Eds.), Advances in neural information
processing systems 16. Cambridge, MA: MIT Press.

Rumelhart, D., Hinton, G., & Williams, R.
(1986). Learning internal representations by back-
propagating errors. In D. Rumelhart and J. Mc-
Clelland (Eds.), Parallel distributed processing: Ex-
plorations in the microstructure of cognition, vol. 1,
318-362. MIT Press.

Vapnik, V. (1995). The Nature of Statistical Learning
Theory. Springer. Second edition.

