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ABSTRACT

We present an overview of recent research at IDIAP on speech
& face based biometric authentication. This paper covers user-
customised passwords, adaptation techniques, confidence measures
(for use in fusion of audio & visual scores), face verification in dif-
ficult image conditions, as well as other related research issues. We
also overview the open source Torch library, which has aided in the
implementation of the above mentioned techniques.

1. INTRODUCTION

The goal of a biometric identity verification (authentication) system
is to either accept or reject the identity claimed by a given person,
based on the person’s characteristics such as speech, face or finger-
prints. Applications range from access control, transaction authen-
tication (e.g. telephone banking), voice mail, secure teleworking, to
forensic work, where the task is to determine whether a biometric
sample belongs to a given suspect [12].

In this paper we present an overview of recent research at IDIAP
in the fields of speaker verification (Section 2), face verification
(Section 3) and multi-modal verification (Section 4). In Section 5
we describe an open source machine-learning library, called Torch,
which has aided in the implementation of the above mentioned tech-
niques.

As a thorough introduction to the field of biometrics is beyond
the scope of this paper, it is assumed that the reader is familiar with
basic concepts in speaker, face and multi-modal verification. Recent
introductory and review material can be found in [5, 14, 27].

2. SPEAKER VERIFICATION

2.1. Comparison of Several Adaptation Methods
Gaussian Mixture Models (GMMs), the main tool used in text-
independent speaker verification [25], can be trained using the Ex-
pectation Maximization (EM) algorithm [11]. However, in order to
obtain correctly estimated models, large amount of training data for
each client is generally needed, which is usually difficult to obtain
in real applications. Hence several adaptation methods, which start
from a general model and adapt it for specific clients, have been
proposed in order to overcome this problem. We recently compared
[23] some of them in order to assess their relative performance on
the NIST database [12]. We compared the classical Bayesian Max-
imum a Posteriori (MAP) principle [17] with two other techniques,
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Maximum Likelihood Linear Regression (MLLR) [16] and eigen-
voices [20] (inspired by eigenfaces [30]). Table 1 shows that the
simple MAP technique is still the best adaptation method for GMM-
based speaker verification.

One explanation for the poor results of MLLR and EigenVoices
might be that both methods force the parameters of the client models
to be in a smaller parameter space, defined by training clients (pre-
viously seen but not used during testing); this may be good for dis-
criminating clients from everything else, but not necessarily good
for discriminating clients from each other.

Method ML MAP MLLR Eigen
HTER1 22.9 15.8 18.42 20.57

Table 1. Performance of adaptation methods on the NIST database.

2.2. Synchronous Alignment
Classical text-dependent speaker verification systems are based on
two Hidden Markov Models (HMMs): the client modelθclient and
the anti-client model (world model)θworld . The Viterbi algorithm
is then used to find the best path through these models. The main
idea of synchronous alignment is to force this path to be the same
for the two models. In [24] we proposed a new Viterbi criterion for
such a task:

Q∗ = arg max
Q

p(X, Q|θclient )
(1−α) · p(X, Q|θworld )α

whereQ∗ is the best estimated path,X are the observations andα
the weight given to the world model.

A similar approach can be used in text-independent speaker ver-
ification using GMMs: we force the Gaussians that maximize the
likelihood of the observations to be the same in the two models; ini-
tial results show that this approach is more robust in difficult condi-
tions (poor client data, noisy data) and simplifies the mathematics.

2.3. Decision Strategies
The statistical framework used in speaker verification usually in-
volves the estimation of the log likelihood ratio of the access given
the client and world models. This ratio is then compared to a thresh-
old which should in theory be equal to 0, when no other priors are
available. In practical applications, this threshold is in fact esti-
mated on a separate development set in order to reach the Equal Er-
ror Rate (EER) or to minimize HTER1. Instead of searching for such
a threshold, we proposed in [2] to estimate a more complex function
of the obtained average log likelihoods given the client and world
models. We compared several approaches such as Multi-Layer Per-
ceptrons (MLPs) and Support Vector Machines (SVMs). On the
PolyVar database (over 36,000 tests), the HTER was reduced from
5.55% (using the standard threshold) to 4.73% (using the SVM de-
cision approach).

1Half Total Error Rate (HTER) is defined as1
2

(FA%+FR%), where FA%
is the false acceptance rate and FR% is the false rejection rate.



2.4. User-Customised Passwords

In a typical text-dependent speaker verification system, the speaker
is constrained to a single phrase or a set of words for which the sys-
tem hasa priori knowledge (e.g. correct phonetic transcription of
the phrase, or the vocabulary from which the phrase can be chosen
is very limited [e.g. 10 digits]). Compared to text-independent sys-
tems, where the user can utter any text, text-dependent systems are
less user-friendly but generally have better discrimination ability.
In User-Customised Password (UCP) systems [29], the system does
not place any constraints on the password: users are free to choose
any text.

Implementation of a UCP system raises several issues; first, we
have to infer the HMM topology of the password; second, we have
to create (using adaptation techniques) a speaker dependent model
which models both the lexical content of the password as well as the
speaker’s characteristics. Formally, a speaker pronouncing utter-
anceX is classified as a true claimantSk associated with password
Mk when:

P (Mk, Sk|X) ≥ P (Mk, Sk|X) (1)

and P (Mk, Sk|X) ≥ P (Mk, S|X) (2)

whereP (Mk, Sk|X), P (Mk, Sk|X) and P (Mk, S|X), are, re-
spectively, the joint posterior probability of a true client pronounc-
ing the correct password, an impostor pronouncing the correct pass-
word and any speaker pronouncing any other password.

From the above decision rules we have derived two approaches,
described in Sections 2.4.1 & 2.4.2. Both approaches use the same
phonetic inference technique, described as follows: a hybrid
HMM/ANN 2 system [6] is used to infer the phonetic transcription
for each repetition of the password; based on the best phonetic tran-
scription (yielding the highest normalised posterior probability), the
topology of the HMM passwordMk is selected.

2.4.1. HMM based
Using Bayes rule, decision rules (1) and (2) can be rewritten as
follows3 [3]:

P (X|Mk, Sk)

P (X|Mk, Sk)
≤ δ1 (3)

and
P (X|Mk, Sk)

P (X|Mk, S)
≤ δ2 (4)

The terms on the left side of Eqns. (3) & (4) can be interpreted, re-
spectively, as the speaker verification score (when the speaker pro-
nounces the correct password) and the utterance verification score.
A weighted sum combination technique is used to estimate the final
score [27]. In this approach we adapt (using speaker’s training data
and MAP adaptation) the inferred HMM passwordMk, in which
each state is a phoneme modeled by a 3-state HMM model with
3 Gaussians per state. This approach will be referred to asSYS-A.

2.4.2. Combined HMM/ANN and GMM based
Using the conditional probability rule, decision rules (1) and (2) can
be rewritten as follows [4]:�

P (Mk|Sk, X)

P (Mk|Sk, X)

� �
P (X|Sk)

P (X|Sk)

�
≥ δ3 (5)�

P (Mk|Sk, X)

P (Mk|S, X)

� �
P (X|Sk)

P (X|S)

�
≥ δ4 (6)

2ANN = Artificial Neural Network
3Assuming that thea priori simultaneous probability of any speaker and

any word is equal for all combinations of speakers and words

The first term in both decision rules is theposterior probabilitythat
the pronounced wordX is Mk; it is estimated by an ANN. The
second term is the verification score found using a text-independent
GMM-based system. A weighted sum combination technique is used
to combine the two scores. For each speaker we adapt a single-layer
perceptron and a GMM. We shall refer to this approach asSYS-B.

2.4.3. Evaluation
Results on the PolyVar Database [9], using both inferred and correct
phonetic transcriptions, are shown in Table 2. We can see thatSYS-A
is somewhat sensitive to the accuracy of the transcription process.
For SYS-Bwe have found that the performance is close to using
the GMM sub-system alone, indicating that when a GMM model
is trained using only short words, it becomes speaker- as well as
speech-dependent.

SYS-A(I) SYS-A(C) SYS-B(I) SYS-B(C)
α 0.6 0.6 0.3 0.5

EER 3.35% 3.03% 3.51% 3.45%

Table 2. Performance with optimal combination parameterα. (C) and
(I) denote systems using the correct and the inferred phonetic transcription,
respectively.

2.5. Future Work
In text-independent systems, verification approaches directly based
on discriminative techniques such as MLPs and SVMs currently fail
to match the verification performance of the (generative) GMM ap-
proach. Why is it so? One of the reasons could be the criterion used
during training: MLPs and SVMs try to minimize the total classifi-
cation error instead of the HTER or EER. Initial results for MLPs
and SVMs trained using a more appropriate criterion are promising.

3. FACE VERIFICATION
Generally speaking, a full face verification system can be thought
of as being comprised of three stages:

1. Face localisation and segmentation
2. Normalisation
3. The actual face verification, which can be further subdivided into:

(a) Feature extraction
(b) Classification

The second stage (normalisation) usually involves a geometric trans-
formation (to correct for size and rotation), but it can also involve
an illumination normalisation (however, illumination normalisation
may not be necessary if the feature extraction method is robust
against varying illumination). Here we concentrate on stage (3).

3.1. Enhanced PCA Feature Extraction
A major source of errors is the sensitivity of the feature extraction
stage to illumination direction changes. While this sensitivity is
a large concern in security systems, in forensic applications [21]
other types of image corruption can be important; here, face images
may be obtained in various illumination conditions from various
sources: digitally stored video, possibly damaged and/or low qual-
ity analogue video tape or TV signal corrupted with “static” noise
(see Fig. 1 for example images).

In standard Principal Component Analysis (PCA) based feature
extraction (also known as eigenfaces [30]), a given face image is
represented by matrixF containing grey level pixel values;F is
converted to a face vector,~f , by concatenating all the columns; a
D-dimensional feature vector,~x, is then obtained by:

~x = UT (~f − ~fµ) (7)

whereU containsD eigenvectors (with largest corresponding eigen-
values) of the training data covariance matrix, and~fµ is the mean of
training face vectors.



Fig. 1. Left to right: original image, corrupted with linear illumination
change, Gaussian illumination change, white Gaussian noise, compression
artefacts.

PCA derived features have been shown to be sensitive to changes
in the illumination direction causing rapid degradation in verifica-
tion performance [28]. In the proposedenhanced PCAapproach, a
given face image is processed using recently proposedDCT-mod2
feature extraction [28] to produce pseudo-imageF̂ , which is then
used in place ofF by traditional PCA feature extraction. Since
DCT-mod2feature vectors are robust to illumination changes, fea-
tures obtained via theenhanced PCAshould also be robust to il-
lumination changes. Formally, the pseudo image is constructed as
follows:

F̂ =

26664
~c (∆b,∆a) ~c (∆b,2∆a) ~c (∆b,3∆a) · · ·
~c (2∆b,∆a) ~c (2∆b,2∆a) ~c (2∆b,3∆a) · · ·
~c (3∆b,∆a) ~c (3∆b,2∆a) ~c (3∆b,3∆a) · · ·
...

...
...

. . .

37775 (8)

where~c (n∆b,n∆a) denotes theDCT-mod2feature vector for an 8×8
block located at(n∆b, n∆a), while ∆b and∆a are block location
advancement constants for rows and columns respectively (here,
∆b=∆a=4).

Experiments [26] on the VidTIMIT database show (see Table 3)
that theenhanced PCAtechnique retains all the positive aspects of
traditional PCA (that is robustness against white noise and com-
pression artefacts) while also being robust to illumination direction
changes; moreoverenhanced PCAoutperforms histogram equalisa-
tion pre-processing.

Type clean lin. illum. Gaus. illum. white noise compr.
standard 3.57 27.14 32.19 3.57 3.57
hist. equ. 4.29 32.86 36.34 7.14 4.33
enhanced 5.31 7.14 18.57 5.67 6.03

Table 3. EER Performance of PCA based feature extraction

3.2. Comparison between GMM and MLP classifiers
The choice of the classifier not only has an impact on the discrim-
ination ability of the system, but also its robustness to imperfectly
located faces. Experiments on the XM2VTS database show that
(when usingDCT-mod2features [28]) the GMM approach easily
outperforms the MLP approach for high resolution faces and is sig-
nificantly more robust to imperfectly located faces (see Table 4).
Further experiments [8] have shown that the computational require-
ments of the GMM approach can be significantly smaller than the
MLP approach at a cost of small loss of performance.

Model type (face size) FA% FR% HTER
GMM (80×64) 1.95 2.75 2.35
MLP (80×64) 11.55 11.25 11.40
GMM (40×32) 5.47 6.25 5.86
MLP (40×32) 7.98 9.75 8.86

Table 4. Comparison of GMM and MLP performance using automatically
located faces (XM2VTS, Config. I)

4. CONFIDENCE MEASURES FOR FUSION

Several recent contributions have shown that combining the deci-
sions or scores coming from various unimodal verification systems
(based, for instance, on the voice or the face of a person) often en-
hances the overall authentication performance (e.g. [19, 27]). This
has been shown to be true using various fusion algorithms, from the

simplest ones such as product or sum rules, to the more complex
ones such as SVMs or MLPs.

Various researchers and practitioners have expressed an interest
in the estimation of some sort of confidence on decisions taken by
authentication systems. Based on this interest, we recently analysed
several methods to improve fusion algorithms by trying to estimate
complementary information such as a confidence on the decision of
each unimodal system [1]. One can think of the fusion algorithms
as a way to somehowweightthe scores of different unimodal ver-
ification systems, eventually in a nonlinear way, in order to give a
better estimation of the overall score. If one had access not only
to the scores but also to a confidence measure on these scores, this
measure could help in the fusion process. Hence, intuitively, if for
some reason one unimodal verification system was able to say that
its score for a given access was not very precise, while a second
unimodal verification system was more confident on its own score,
the fusion algorithm should be able to provide a better decision than
without this knowledge.

The methods proposed in [1] where rather simple. The first
one was based on the hypothesis that scores coming from unimodal
verification systems could have been generated by two Gaussian
distributions, one for the genuine accesses and one for the impos-
tor accesses. Based on this hypothesis, a simple confidence score
can be derived. Since this Gaussian hypothesis is false in general,
the second proposed method was based instead on a simple non-
parametric idea: estimate the confidence associated with a score
using a simple histogram. Finally, the third proposed method was
based on the possibility of estimating the gradient of a simple confi-
dence measure (such as the likelihood) that could be extracted from
the model, with respect to all its parameters. The amplitude of such
gradient would then give an idea of the adequacy of the model to
explain the decision (a small value would mean that the model is
confident, while a large value would imply a small confidence on
the decision).

In experiments on the XM2VTS database [22], the above meth-
ods were used to compute additional inputs given to the fusion algo-
rithm. Results are presented in Table 5. The traditional fusion algo-
rithm (SVM in this case) was trained with two inputs: the log like-
lihood of the score given the client model and the log likelihood of
the score given the world model. The “fusion + confidence” model
was also an SVM, trained with four inputs: the two log likelihoods
plus the two correspondingmodel adequacy estimatesof the con-
fidence of each model. While it is clear that the fusion algorithm
clearly enhances the performance, adding some confidence infor-
mation adds a modest relative improvement of 6% on the overall
performance.

A probably more interesting way of using confidence values
for authentication systems is to propose to delay (or hand over to a
human) a decision when the associated confidence is lower than a
given threshold. Using the non-parametric method of computing the
confidence values, and selecting for instance the threshold in such a
way that less than 0.64% of accesses were set aside, it was possible
to reduce the overall HTER obtained on configuration I of XM2VTS
from 0.69% to 0.45%, a 35% relative performance improvement.

HTERSystem
Config. I Config. II

Face only (with MLPs) 3.22 2.61
Voice only (with GMMs) 1.91 1.75

Fusion using SVMs 0.69 0.30
Fusion + Confidence 0.67 0.26

Table 5. Verification performance on XM2VTS



5. THE OPEN-SOURCE TORCH LIBRARY

The open source C++ Torch library4 implements most state-of-the-
art machine learning algorithms in a unified framework. The objec-
tive is to ease the comparison between algorithms, simplify the pro-
cess of extending them and provide a platform for easy implemen-
tation of new algorithms. Unlike programs such asMatlab which
are more suited for prototyping and toy problems, C++ programs
written with the aid of Torch are able to deal with large real-life
problems.

Torch can handle both static and dynamic problems. For exam-
ple, Torch can deal with all kinds of “gradient-machines” which can
be trained with the back-propagation algorithm [13]. Many mod-
ules are available, which can be connected with each other in order
to obtain the desired machine. Creating a multi-layered perceptron,
a mixture of experts, a radial basis function neural network, or even
a time delay neural network or a complex convolutional neural net-
work (spatial or temporal), takes only a few lines of C++ code with
the aid of Torch.

Support Vector Machines (SVMs) [13, 31] are available in Torch;
in fact, their implementation is one of the fastest available [18, 10].
Gaussian Mixture Models (GMMs), often used to represent any
static distribution, have also been implemented in Torch.

The Hidden Markov Model (HMM) approach [13] is one of the
most widely used techniques to represent sequences (such as biolog-
ical sequences, speech data, or handwritten data). In Torch the user
has the possibility to create HMMs with many kinds of distribution
models, including methods based on artificial neural networks. It is
also possible to train them either with an Expectation Maximization
algorithm [11], with a Viterbi [32] algorithm, or even using gradi-
ent ascent. Moreover, several classes have also been implemented in
order to be able to solve connected word speech recognition tasks.
Small and large vocabulary decoders, compatible with Torch, are
available. We have also implemented the Maximum a Posteriori
(MAP) [17, 25] adaptation technique for both GMMs and HMMs.

Simple algorithms such ask-means,k-nearest neighbours or
Parzen windows are provided as well. Bagging [7] and boosting [15]
which are both “ensemble” algorithms, can be applied in Torch to
almost any machine learning algorithm.

Being able to use all these algorithms in a simple yet unified
framework enables researchers to compare them and easily enhance
them. We strongly believe that providing such a platform to the
community helps researchers to propose, develop and share novel
algorithms more quickly.
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